An Daras
Multi Academy Trust

St Stephens Community Academy Calculation Policy

Autumn 2016

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

This policy has been developed with an emphasis on Singapore methods to develop number awareness and fluency.

Using the concrete-pictorial-abstract approach:

Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete representation The enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial/Iconic representation The iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation The symbolic stage - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$.

Class F

Addition

Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Explore part part whole relationship

Using the ten frame to support addition of single digits - counting all/combining two groups

00000	$6+4=10$
00000	$4+4=8$
000	$5+2=7$
00000	$5+4=6$
00000	$2+4$
0	

Solving problems using concrete and pictorial images.

Multiplication

Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Children will experience equal groups of objects.

They will work on practical problem solving activities involving

Division

Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Year 1

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line
Key skills for addition at Y1: (non-negotiables)
Read and write numbers to 100 in numerals, incl. 1-20 in words
Recall bonds to $5,6,7,8,9,10$ and 20, and addition facts within 20
Count to and across 100
Count in multiples of 1,2,5 and 10
Count on in ones from a given 2-digit number
Add two single-digit numbers
Add three single-digit numbers spotting doubles or pairs to 10
Count on in tens from any given 2-digit number
Add 10 to any given 2-digit number
Use number facts to add single-digit numbers to two-digit numbers e.g. use $4+3$ to work out $24+3,34+3$...
Add by putting the larger number first
Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations.

Joining two groups and then recounting all objects using one-to-one Correspondence (lots of practice making 10 and numbers to 10 e.g. $6+4=10$ or $3+5=$ 8)	$3+4=7$	
Learn number bonds to 20 and demonstrate related facts Teach addition and subtraction alongside each other as pupils need to see the relationship between the facts.		$\begin{aligned} & 8+4=12 \\ & 4+8=12 \end{aligned}$ This is a family of addition and subtraction facts. $\begin{aligned} & 12-8=4 \\ & 12-4=8 \end{aligned}$

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?
Key skills for subtraction at Y1: (non-negotiables)
Recall bonds to $5,6,7,8,9,10$ and 20, (number bond 'story')
Given a number, say one more or one less.
Count to and over 100, forward and back, from any number.
Represent and use subtraction facts to 20 and within 20.
Subtract with one-digit and two-digit numbers to 20, including zero.
Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string, objects, cubes) and pictures, and missing number problems.
Read and write numbers from 0 to 20 in numerals and words.
Use number facts to subtract single-digit numbers from 2-digit numbers, e.g. use 7-2 to work out 27-2, 37-2
Taking away should begin with physical objects: objects, cubes, Dienes etc

Subtraction by counting back	
Subtracting a single digit number from a single digit number and a single digit from a two digit by crossing out pictures	Subtract by Crossing Out $7-2=5$ 5 ladybirds are left.
Subtracting using the part part whole (include problem solving with missing digits). $?-5=2$	
Subtraction by subtracting from 10 Children subtract from 10 and not from ones	$14-8=$? Let's Learn Subtract from 10 $14-8=6$ Sam has 6 doughnuts left.

Multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count
Key skills for multiplication at Y1: (non-negotiables)
*Count in multiples of 2,5 and 10.
*Begin to say what three $5 s$ are by counting in $5 s$ or what four $2 s$ are by counting in $2 s$, etc.
*Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
*Make connections between arrays, number patterns, and counting in twos, fives and tens.
*Double numbers to 10 using concrete objects and pictorial representations.

Counting in multiples of 2,5 and 10 from zero Children should count the number of groups on their fingers as they are skip counting.	
When moving to pictorial/written calculations the vocabulary is important	This image represents two groups of 4 or 4 twice
Solving multiplication problems using repeated addition	

Division

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array
Key number skills needed for division at Y1: (non-negotiables)
*Begin to count in $2 s, 5 s$ and $10 s$
*Find half of an even numbers to 12 and know it is hard to halve an odd number
Find half of even numbers by sharing
*Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher

* Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
* They make connections between arrays, number patterns, and counting in twos, fives and tens.

Pupils should be taught to divide through working practically and the sharing should be shown below the whole to familiarize children with the concept of the whole.

The language of whole and part part should be used.

$$
8 \div 4=2
$$

1
There are 8 cans.

There are 4 boxes of 2 cans.

Children will experience equal groups of objects and will count in $2 s, 5 s$ and $10 s$. They will work on practical problem solving activities involving equal sets or groups,

e.g. If the frog hops in $2 s$, how many hops will there be before he lands on 10 ?

Here are 20 counters. Arrange them in equal rows. Is there a different way to arrange them in equal rows?

-4+t+t+t

Year 2

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary Calculation skills for addition at Y2:
Add a 2-digit number and ones, using number facts and bridging 10 (e.g. $27+6$)
Add a 2 -digit number and tens (e.g. $23+40$)
Add pairs of 2-digit numbers (e.g. $35+47$)
Add three single-digit numbers (e.g. $5+9+7$)
12,20 and bonds of tens to $100(30+70$ etc.)
-digit numbers (tens and ones)
Show that adding can be done in any order (the commutative law).
ng concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?
difference, count on, strategy, partition, tens, units
Key skills for subtraction at Y2:
Recognise the place value of each digit in a two-digit number.
Recall and use subtraction facts to 12,20 fluently, and derive and use related facts up to 100 (number bonds story).
Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a two-digit number and ones, a two-digit number and tens, and two two-digit numbers.
Show that subtraction of one number from another cannot be done in any order.
Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
Read and write numbers to at least 100 in numerals and in words.

Multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times...
Key skills for multiplication at Y2:
*Count in steps of 2, 3 and 5 from zero, and in 10s from any number.

* Recall and use multiplication facts from the 2, 3, 5 and 10 multiplication tables, seeing these as 'lots of', e.g. 5 lots of 2
*Recognising odds and evens.
*Double numbers up to 20
*Begin to double multiples of 5 to 100
*Begin to understand that multiplication is repeated addition and to use arrays (E.g) 3×4 is three rows of four dots.
* Write and calculate number statements using the x and $=$ signs.
* Show that multiplication can be done in any order (commutative).
* Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
* Pupils use a variety of language to discuss and describe multiplication.

Skip counting in multiples
of $2,3,5,10$ from 0

Recall and use multiplication facts for the multiplication tables 2,5 and 10.	
I can use multiplication (x) and equal (=) sign when writing out my times tables.	
Multiplication is commutative Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	How many dots ane there?
Solve multiplication problems in context using arrays and repeated addition	$\begin{aligned} & 3 \times 5=\square \\ & 5 \times 3=\square \end{aligned}$

Division

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over Key number skills needed for division at Y 2 :
*Count in steps of 2,3, and 5 from 0
*Using fingers, say where a number is in the $2 s, 5 s$ or $10 s$ s. (E.g> 8 is the fourth number when I count)
*Relate division to grouping,

* Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
* Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
* Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
* Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, include problems in contexts.

Year 3

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, =carry', expanded, compact
Key skills for addition at Y3:
Read and write numbers to 1000 in numerals and words.
-digit numbers mentally, incl. those exceeding 100.
Add a three-digit number and ones mentally $(175+8)$
Add a three-digit number and tens mentally $(249+50)$
Add a three-digit number and hundreds mentally $(381+400)$
Add pairs of 'friendly' 3-digit numbers, e.g. $320+450$
Begin to add amounts of money using partitioning.
Solve problems, including missing number problems, using number facts, place value, and more complex addition.
Recognise the place value of digits in 3-digit numbers (hundreds, tens, ones.)
Continue to practise a wide range of mental calculations, ie. number bonds, adding the nearest multiple of $10,100,100$ and adjusting, using near doubles, partitioning and recombining
Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with three digits.
Begin to add like fractions. (E.g. $3 / 8+1 / 8+1 / 8$)
Recognise fractions that add to 1. (E.g. $\frac{1}{4}+\frac{3}{4}$ or $3 / 5+2 / 5$)

Add two three digit numbers. Children need to	$432+$ Step 1	$521=$ Add the ones. 2 ones +1 one $=3$				h	t	0
use equipment first to support their understanding of place value.				\cdots	+	4 5	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	2 1
Children to word gradually to three digit + three digit starting without carrying and gradually moving towards carrying.		111		*				3

Step 2 | Add the tens. |
| :--- |
| 3 tens 2 tens $=5$ tens |

There are 953 flowers altogether.
$236+345=$

11

Step 2 Add the tens. I

1 ten +3 tens +4 tens $=8$ tens

	h	t
0		
	2	3
	6	
+	4	5
	8	1

Step 3 Add the hundreds.
2 hundreds +3 hundreds $=5$ hundreds

\mathbf{h}	\mathbf{t}	$\mathbf{0}$
2	$\frac{1}{3}$	6
$+\quad 3$	4	5
5	8	1

$236+345=581$

Using the bar to find missing digits.	Bar Model to support understanding of problem solving: It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.	A man sold 230 balloons at a carnival in the morning. He sold another 86 balloons in the evening . How many balloons did he sell in all?	

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit
Key skills for subtraction at Y3:
Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds
Estimate answers and use inverse operations to check
Find 10 more or 10 less of a given number.
Counting up differences as a mental strategy when numbers are close together or near multiples of 10 (see examples above)
Practice mental subtraction strategies such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21), and select most appropriate methods to subtract, explaining why.
Use counting up as an informal written strategy for subtracting pairs of three-digit numbers, Begin to use partitioning for expanded columnar addition,

Multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value Key skills for multiplication:
*Recall and use multiplication facts for the 2, 3, 4, 5, 8 and 10 multiplication tables, and multiply multiples of 10 .

* Multiply whole numbers by 10 and 100.
* Use place value and number facts in mental multiplication. E. 9×14 as 3×10 and 3×4.
*Write and calculate number statements using the multiplication tables they know, including 2 -digit x single-digit, drawing upon mental methods, and progressing to reliable written methods.
* Solve multiplication problems, including missing number problems.
*Solve simple problems in contexts, deciding which operations and methods to use.
*Develop efficient mental methods to solve a range of problems e.g using commutativity ($4 \times$ $12 \times 5=4 \times 5 \times 12=20 \times 12=240$) and for missing number problems $\times 5=20,3 x=18, x=32$ and partitioning to partition teen numbers to multiply by a single digit number.
*Double numbers up to 50
Written
Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' single digit numbers.

Children should be able to recall the 2 , $5,10,3,4$ and 8 times tables.	Let's Learn		
	1) There are 4 groups of 23 fish. How do we multiply 23 by 4?	,	\cdots
Multiple a two digit number by a one digit.		Step 1	Multiply the ones by 4 . $\begin{array}{r} t \quad 0 \\ 2 \quad 3 \\ \times \quad 4 \end{array}$
	$\begin{aligned} & 4 \text { ones } \times 3=12 \text { ones } \\ & 12 \text { ones }=1 \text { ten } 2 \text { ones } \end{aligned}$		12

Division

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, =carry', remainder, multiple
Key number skills needed for division at Y 3 :
*Recall and use multiplication and division facts for the 2, 3, 4, 5, 8 and 10 multiplication tables (through doubling, connect the 2,4 and 8s).
*Divide whole numbers by 10 or 100 to give whole number answers
*Recognise that division is not commutative.
*Use place value and number facts in mental division. (E.g. $84 \div 4$ is half of 42)
*Divide larger numbers mentally by subtracting the tenth multiple, including those with remainders. (E.g. $57 \div 3$ is $10+9$ as $10 \times 3=30$ and $9 \times 3=27$)
*Halve even numbers to 100 , halve odd numbers to 20
*Solve problems, in contexts, and including missing number problems, involving multiplication and division.
*Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts $(30 \times 2=60$, so $60 \div 3=$ 20 and $20=60 \div 3$).
*Perform divisions just above the 10th multiple using the written layout and understanding how to give a remainder as a whole number.
*Find unit fractions of quantities and begin to find non-unit fractions of quantities

Dividing by grouping understanding the concept of remainders.	Start with using the real objects-or objects that represent the calculation. $13 \div 4=3$ Remainder 1
Dividing using short division. Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the	 Remind children of correct place value, that 69 is equal to 60 and 9, but in short division, pose: - How many 3's in 6? $=2$, and record it above the 6 tens. - How many 3's in 9 ? $=3$, and record it above the 9 ones. Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. 72 $\div 3$), and be taught to 'carry' the remainder onto the next digit.

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, „carry", expanded, compact,
thousands, hundreds, digits, inverse
Key skills for addition at Y4:
[Select most appropriate method: mental, jottings or written and explain why.
\square Recognise the place value of each digit in a four-digit number.
\square Round any number to the nearest 10,100 or 1000 .
I Estimate and use inverse operations to check answers.
\square Solve 2-step problems in context, deciding which operations and methods to use and why.
I Find 1000 more or less than a given number.
0 Continue to practise a wide range of mental addition strategies, ie. number bonds, add the nearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining.
I Add numbers with up to 4 digits using the formal written method of column addition
\square Solve 2-step problems in contexts, deciding which operations and methods to use and why.
Estimate and use inverse operations to check answers to a calculation.
Add like fractions, e.g. $3 / 5+4 / 5=7 / 5=12 / 5$.
Be confident with fractions that add to 1 and fraction complements to 1 . (E.g. ${ }^{2} / 3^{+}$? $=1$)

Using the bar to find missing digits.	This is not a form of getting the correct answer but helping to guide children to the correct operation. It is important Alison jogs 6,860 metres and Calvin jogs 5,470 metres. How far do they jog altogether? to use the bar in this way to encourage the use of it to aid with problem solving.	

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance be-tween, how many more, how many fewer / less than, most, least, count back. how many left, how much less is_? difference, count on, strategy, partition.
tens, units exchange, decrease, hundreds, value, digit, inver=e
Key =kill= for subtraction at y4:
[0्र Subtract by counting on where numbers are close together or they are near to multiples of $10,100 \mathrm{etc}$.
I Children select the most appropriate and efficient methods for given subtraction calculations.
I Estimate and use inverse operations to check answers.
I Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
\square Solve simple measure and money problems involving fractions and decimals to two decimal places.
\square Find 1000 more or less than a given number.
\square Count backwards through zero, including negative numbers.
\square Recognise place value of each digit in a 4-digit number Round any number to the nearest 10. 100 or 1000
\square Solve number and practical problems that involve the above, with increasingly large positive numbers.

Use expanded column subtraction for 3 -digit and 4-digit numbers
Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100
E.g. 2002-1865 is

Subtract like fractions, e.g. $\frac{1}{4}+1 / 8=3 / 8$
Use fractions that add to 1 to find fraction complements to 1 . e.g. $1-2 / 3=1 / 3$

Multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse

Key skills for multiplication at Y4:

* Count in multiples of 6, 7, 9, 25 and 1000
* Recall multiplication facts for all multiplication tables up to 12×12.
*Multiply whole numbers and one-place decimals by 10,100,1000
*Multiply multiples of $10,100,1000$ by single digit numbers. (E.g. 300×6 or 4000×8)
*Use understanding of place value and number facts in mental multiplication. (E.g. 36×5 is half of 36 $\times 10$ and $50 \times 60=3000$)
*Partition 2-digit numbers to multiply by a single-digit number mentally. (E.g. 4×24 as 4×20 and $4 \times$ 4)
*Multiply near multiples using rounding. (E.g. 33×19 as $33 \times 20-33$)
*Find doubles to double 100 and beyond using partitioning
*Begin to double amounts of money. (E.g. $£ 35.60$ doubled $=£ 71.20$.)
* Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times$ $7+9 \times 7$.
*Solve problems with increasingly complex multiplication in a range of contexts.
*Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
Written
*Use a vertical written method to multiply a one-digit by a 3-digit number (ladder)
*Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by partitioning (grid

answers when dividing by a one-digit number (2 or 3-digit by a single digit)
*Give remainders as whole numbers.
*Begin to reduce fractions to their simplest forms.
*Find unit and non-unit fractions of larger amounts.

Divide up
to 3-digit numbers by a 1 - digit
(without remainders initially)

They will continue to develop their use of repeated subtraction to be able to subtract multiples of the divisor

$$
72 \div 5
$$

02
7
12
17
22
72
or counting forward(linked to multiplication) or

This then leads to the chunking method once the pupils are secure with grouping.

		10	+	5	$=$	1	$5 r 2$
	5	7	2				
	-	5	0				
		2	2				
	-	2	0				
		r	2				

Year 5

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition. column. tens boundary, hundreds boundary. increase. „carry ${ }^{\text {e }}$, expanded. compact, vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenthe, hundredthe, thousandthe
Key =kills for addition at $\mathbf{Y} 5$:
[range of mental strategies ie. add the nearest multiple of 10, 100, 100 and adjust: use near doubles, inverse, partitioning and re-combining: using number bonds.
I Use rounding to check answers and accuracy.
I Solve multi-step problems in contexts, deciding which operations and methods to use and why.
\square Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
\square Round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000.

प Use column addition to add two or threel whole numbers with up to 5 digits \square Use column addition to add any pair of two-place decimal numbers including amounts of money.
\square Begin to add related fractions using equivalences. (E.g. $\frac{1}{2}+1 / 6=3 / 6+1 / 6$)
\square Choose the most efficient method in any given situation

Adding numbers with more than 4 digits including decimals

Using place value charts are key to this as well as place value counters to help with the decimals.

1

This is not a form of getting the correct answer but helping to guide children to the correct operation.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

MacDonalds sold $£ 9957.68$ worth of hamburgers and $£ 1238.5$ worth of chicken nuggets. How much money did they take altogether?

$?$	
$£ 957.68$	$£ 1238.5$

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left. how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal
Key skills for subtraction at Y 5 :
[0] Subtract numbers mentally with increasingly large numbers.
[Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy.
I Solve addition and subtraction multi-step problems in context. deciding which operations and methods to use and why.
\square Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
I Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.|
I Interpret negative numbers in context, counting forwards and backwards with positive and negative in-tegers through 0 .
\square Round any number up to 1 million to the nearest $10,100,1000,10000$ and 100000.
Use compact or expanded column subtraction to subtract numbers with up to 5 digits.
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 .

Use complementary addition for subtractions of decimals with up to two places incl. amounts of money

Begin to subtract related fractions using equivalences. (E.g. $\frac{1}{2}-1 / 6=2 / 6$)
Choose the most efficient method in any given situation

Subtract with at least four digit numbers including two decimal places.

Include money, measures and decimals ensuring that children do this practically before the abstract.

Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

A whole to Lapland costs $£ 5005$ for a family of four, the Smith's have only saved $£ 3787.75$, how much money do they still need to find?

Multiplication

```
Key vocabulary groups off, lots off. times, mrmay, altogether, multiply, count.
multiplied by. repeathed odidition, colurmm, row, comrmurtative, sets of, equal
groupes,_times as big as, once, twice, three times_, partition, grid method,
total, multiple, product, inverse, squarne, factor, imteger, checimal.
short//long multi-plication. pcarry'
Key shills fior melltiplicartion aut Yb.
GKnow by lhoart all the mwultiplication fiacta up to 12 wo 12
```



```
TUse knowledge of fiactarsa and multiples in multiplicartion. (Eg. 43 x 6 is diouble 43
```



```
#Uve kmowiledge of place walue and mouneling in mewtral multiplication. (E.g. 6% % 19g
as67>200-67)
#Nse dioubling and halving as a stmaregy in mental multiplication. (Eg. Es m E = half
Of EBi m 10, and 34 ma 4 is 34 doublled twice]
-Partition 2--chigit numbucrs, inclluding ndecimmals, to muultiply byr a singllo-digit mumbuer
```



```
T plus,0.3 seTy
```



```
[E,74) plus 4Ep ulowltleal (90p) ET4909
Writmen
TUse short multiplication to multiply a 1-digit mumber by a number with up to 4
eligit=
```



```
betwean 11 andl 20
```



```
*Find simplle pmencontages aff amwunts Glegg 10%s, 6%, 20%, 166 and EO%)
Mlegin to multiply finactiones and mizeed mumbers by whole numberse I 10, egg 4 = 2/a
= "/a = 2 2/a
```

Multiplying up to four digit numbers by two digits using long multiplication.

Children need to be taught to approximate first, e.g. for 72×38, they will use rounding: 72×38 is approximately $70 \times 40=\mathbf{2 8 0 0}$, and use the approximation to check the reasonableness of their answer.

- Explain that first we are multiplying the top number by 7 starting with the units. (any carrying needs to be done underneath the numbers). - Now explain that we need to put a 0 underneath—explain that this is because we are multiplying the number by 20.. (2 tens) which is the same as multiplying 10 and

Division

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)
Key number skills needed for division at Y 5 :
*Recall multiplication and division facts for all numbers up to 12×12 (as in Y4).

* Multiply and divide numbers mentally, drawing upon known facts.
* Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
* Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
* Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 and 10,000 to give whole number answers or answers to to 1,2 or 3 decimal places.
* Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
* Work out whether a number up to 100 is prime, and recall prime numbers to 19.
* Use multiplication and division as inverses.
*Halve amounts of money by partitioning. (E.g. Half of $£ 75.40=$ half of $£ 75$ (37.50) plus half of 40 p (20 p) which is $£ 37.70$)
*Divide larger numbers mentally by subtracting the 10 th or 100 th multiple as appropriate. ($\mathrm{E} . \mathrm{g} .96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36 ; 312 \div 3$ is $100+4$ as $100 \times 3=300$ and $4 \times 3=12$)
*Reduce fractions to their simplest form.
* Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 \mathrm{r} 2=241 / 2=24.5 \approx 25$).

Written

*Use short division to divide a number with up to 4 digits by a number ≤ 12.
*Give remainders as whole numbers, fractions or appropriate context.
*Find non-unit fractions of large amounts.
*Turn improper fractions into mixed numbers and vice versa.
*Choose the most efficient method in any given situation
Diving with up to four digit numbers by one digit including numbers where remainders are left.

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

Using the bar to support division problems.

Bar Model to support understanding of problem solving:

Frank has 4920 apples. He needs to put them into baskets of 40 . How many baskets does he need?

Year 6

Addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals. double, most, count on, number line, sum, tens, units, partition, plus, addition. column, tens boundary, hundreds boundary. increase, „carry ${ }^{\text {eq }}$, expanded. compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths
Key =kill= for addition at $Y 6$:
© Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
I Solve multi-step problems in context, deciding which operations and methods to use and why.
I Use estimation to check answers to calculations and determine in the context of a problem. levels of accuracy.
\square Read, write, order and compare numbers up to 10 million and determine the value of each digit.
\square Round any whole number to a required degree of accuracy.
\square Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.
\square Use column addition to add numbers with up to 5 digits.
\square Use column addition to add decimal numbers with|up to 3-digits
DAdd mixed numbers and fractions with different denominators.

Adding several numbers with up to three decimal places.				
Adding using the bar.	Jack went on holiday. His flight cost $£ 70.50$, the hotel $£ 1295$ and spending money $£ 427.89$. How much did Jack spend on his holiday?	$£ 70.50$	$\frac{?}{£ 427.89}$	$£ 1295$

Subtraction

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back , how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease. hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal
Key =kills for subtraction at Y5:
[0] Subtract numbers mentally with increasingly large numbers.
प Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy.
प Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
\square Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
[Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.|
I Interpret negative numbers in context, counting forwards and backwards with positive and negative in-tegers through 0 .
\square Round any number up to 1 million to the nearest $10,100,1000,10000$ and 100000. Use compact or expanded column subtraction to subtract numbers with up to 5 digits.

Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 .

Use complementary addition for subtractions of decimals with up to two places incl. amounts of money

Begin to subtract related fractions using equivalences. (E.g. $\frac{1}{2}-1 / 6=2 / 6$)
Choose the most efficient method in any given situation

Multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, "carry", tenths, hundredths, decimal Key skills for multiplication at Y6:
*Know by heart all the multiplication facts up to 12×12.
*Multiply whole numbers and decimals with up to three places by 10,100 or 1000 , e.g. $234 \times 1000=$ 234,000 and $0.23 \times 1000=230$)
*Identify common factors, common multiples and prime numbers and use factors in mental multiplication. (E.g. 326×6 is 652×3 which is 1956)
*Use place value and number facts in mental multiplication. (E.g. $40,000 \times 6=24,000$ and $0.03 \times 6=$ 0.18)
*Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 (E.g. 28×25 is $\frac{1}{4}$ of $28 \times 100=700$)
*Use rounding in mental multiplication. (34×19 as $(20 \times 34$) - 34)
*Multiply one and two-place decimals by numbers up to and including 10 using place value and partitioning. (E.g. 3.6×4 is $12+2.4$ or 2.53×3 is $6+1.5+0.09$)
*Double decimal numbers with up to 2 places using partitioning
e.g. 36.73 doubled is double $36(72)$ plus double 0.73 (1.46)

Written

*Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
*Use long multiplication to multiply a 2-digit by a number with up to 4 digits
*Use short multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money.
*Multiply fractions and mixed numbers by whole numbers.
*Multiply fractions by proper fractions.
*Use percentages for comparison and calculate simple percentages.

Division

Key Vocabulary: As previously, \& common factor

Key number skills needed for division at Y6:
*Know by heart all the division facts up to $144 \div 12$.
*Divide whole numbers by powers of 10 to give whole number answers or answers with up to three decimal places.
*Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div 6$ is $219 \div 3$ which is 73)
*Use tests for divisibility to aid mental calculation.
*Use doubling and halving as mental division strategies, e.g. to divide by $2,4,8,5,20$ and 25. (E.g. $628 \div 8$ is halved three times: $314,157,78.5$)
*Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6=$ 0.4 or $0.65 \div 5=0.13, £ 6.33 \div 3=£ 2.11$)
*Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of $36(18)$ plus half of $0.86(0.43)$
*Know and use equivalence between simple fractions, decimals and percentages, including in different contexts.
*Recognise a given ratio and reduce a given ratio to its lowest terms.

Written

*Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number
*Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers.
*Give remainders as whole numbers or as fractions, decimals or the appropriate contex \dagger
*Divide a one-place or a two-place decimal number by a number ≤ 12 using multiples of the divisors. *Divide proper fractions by whole numbers.

Divide at least 4 digits by both single-digit and 2-digit numbers (including decimal numbers and quantities)	$\frac{0812 \cdot 1}{8 \longdiv { 6 4 } 9 ^ { 1 7 } \cdot 0 ^ { 2 } 0 ^ { 4 } 0}$	Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.
Long division this is for when dividing by two digit numbers.		 Division $\begin{aligned} & 564 \div 13 \\ & 1 3 \longdiv { 5 6 ^ { 4 } 4 . 5 . ^ { 5 } 0 ^ { 1 1 } 0 } \\ & 564 \div 13 \\ & \left.=43 r 5=43 \frac{5}{13}=43.4 \text { (to } 1 \mathrm{dp}\right) \end{aligned}$

